Sparse Gaussian Mixture Model Clustering via Simultaneous Perturbation Stochastic Approximation

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Feature selection via binary simultaneous perturbation stochastic approximation

Feature selection (FS) has become an indispensable task in dealing with today’s highly complex pattern recognition problems with massive number of features. In this study, we propose a new wrapper approach for FS based on binary simultaneous perturbation stochastic approximation (BSPSA). This pseudo-gradient descent stochastic algorithm starts with an initial feature vector and moves toward the...

متن کامل

Simultaneous perturbation stochastic approximation of nonsmooth functions

A simultaneous perturbation stochastic approximation (SPSA) method has been developed in this paper, using the operators of perturbation with the Lipschitz density function. This model enables us to use the approximation of the objective function by twice differentiable functions and to present their gradients by volume integrals. The calculus of the stochastic gradient by means of this present...

متن کامل

High dimensional Sparse Gaussian Graphical Mixture Model

This paper considers the problem of networks reconstruction from heterogeneous data using a Gaussian Graphical Mixture Model (GGMM). It is well known that parameter estimation in this context is challenging due to large numbers of variables coupled with the degenerate nature of the likelihood. We propose as a solution a penalized maximum likelihood technique by imposing an l1 penalty on the pre...

متن کامل

A Simultaneous Perturbation Stochastic Approximation (SPSA)-Based Model Approximation and its Application for Power System Stabilizers

This paper presents an intelligent model; named as free model, approach for a closedloop system identification using input and output data and its application to design a power system stabilizer (PSS). The free model concept is introduced as an alternative intelligent system technique to design a controller for such dynamic system, which is complex, difficult to know, or unknown, with input and...

متن کامل

High-Dimensional Clustering with Sparse Gaussian Mixture Models

We consider the problem of clustering high-dimensional data using Gaussian Mixture Models (GMMs) with unknown covariances. In this context, the ExpectationMaximization algorithm (EM), which is typically used to learn GMMs, fails to cluster the data accurately due to the large number of free parameters in the covariance matrices. We address this weakness by assuming that the mixture model consis...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: IFAC-PapersOnLine

سال: 2020

ISSN: 2405-8963

DOI: 10.1016/j.ifacol.2020.12.1276